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We analyze single-shot readout for superconducting qubitsvia controlled catch, dispersion, and release of
a microwave field. A tunable coupler is used to decouple the microwave resonator from the transmission line
during the dispersive qubit-resonator interaction, thus circumventing damping from the Purcell effect. We show
that if the qubit frequency tuning is sufficiently adiabatic, a fast high-fidelity qubit readout is possible even in the
strongly nonlinear dispersive regime. Interestingly, theJaynes-Cummings nonlinearity leads to the quadrature
squeezing of the resonator field below the standard quantum limit, resulting in a significant decrease of the
measurement error.

PACS numbers: 03.67.Lx, 03.65.Yz, 42.50.Pq, 85.25.Cp

Introduction.–Fast high-fidelity qubit readout plays an im-
portant role in quantum information processing. For super-
conducting qubits various nonlinear processes have been used
to realize a single-shot readout [1–6]. Linear dispersive read-
out in the circuit quantum electrodynamics (cQED) setup
[7, 8] became sufficiently sensitive for the single-shot qubit
measurement only recently [9, 10], with development of near-
quantum-limited superconducting parametric amplifiers [9–
11]. In particular, readout fidelity of94% for flux qubits [9]
and97% for transmon qubits [10] has been realized (see also
[12]). With increasing coherence time of superconducting
qubits into 10-100µs range [13, 14], fast high-fidelity readout
becomes practically important, for example, for reaching the
threshold of quantum error correction codes [15], for which
the desired readout time is less than 100 ns, with fidelity above
99%.

A significant source of error in the currently available
cQED readout schemes is the Purcell effect [16] — the cavity-
induced relaxation of the qubit due to the always-on coupling
between the resonator and the outgoing transmission line. The
Purcell effect can be reduced by increasing the qubit-resonator
detuning; however, this reduces the dispersive interaction and
increases measurement time. Several proposals to overcome
the Purcell effect have been put forward, including the use of
the Purcell filter [17] and the use of a Purcell-protected qubit
[18]. Here we propose and analyze a cQED scheme which
avoids the Purcell effect altogether by decoupling the res-
onator from the transmission line during the dispersive qubit-
resonator interaction.

Main idea and results.–Similar to the standard cQED mea-
surement [7–10], in our method (Fig. 1) the qubit state af-
fects the dispersive shift of the resonator frequency, thatin
turn changes the phase of the microwave field in the resonator,
which is then measured via homodyne detection. However,
instead of measuring continuously, we perform a sequence of
three operations: “catch”, “disperse”, and “release” of the mi-
crowave field. During the first two stages a tunable coupler
[19, 20] decouples the outgoing transmission line from the
resonator. This automatically eliminates the problems associ-
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FIG. 1: (color online). a) Schematic of the measurement setup. The
radio frequency (RF) source produces a microwave pulse, which pop-
ulates the resonator via a small capacitorCin. The resonator photons
then interacts with a capacitively (Cg) coupled qubit. The interac-
tion with the outgoing transmission line is controlled by a tunable
coupler, which releases photons at the end of the procedure.The re-
leased field is then amplified and mixed with the local oscillator (LO)
signal to be measured via homodyne detection. b) The RF pulseB(t)
(blue curve) and varying qubit frequencyωq(t) (red curve), with ap-
proximate indication of the “catch”, “disperse”, and “release” stages.
Dashed lines show the resonator frequencyωr and initial/final qubit
frequencyω0; ∆ = ωr − ωq is the detuning at the “disperse” stage.

ated with the Purcell effect, as coupling to the incoming mi-
crowave line can be made very small [20].

During the “catch” stage, the initially empty resonator is
driven by a microwave pulse and populated with∼10 pho-
tons. At this stage the qubit is far detuned from the resonator
[Fig. 1(b)], which makes the dispersive coupling negligible
and allows the creation of an almost-perfect coherent statein
the resonator. At the next “disperse” stage of the measure-
ment, the qubit frequency is adiabatically tuned closer to the
resonator frequency to produce a strong qubit-resonator in-
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teraction (it may even be pushed into the nonlinear regime).
During this interaction, the resonator field amplitudes (λeff )
associated with the initial qubit states|0〉 and|1〉 rapidly ac-
cumulate additional phases and separate in the complex phase
plane [see Fig.2(a)]. Finally, at the last “release” stage of
the measurement, after the qubit frequency is again detuned
from the resonator, the resonator photons are released intothe
outgoing transmission line. The signal is subsequently ampli-
fied (by a phase-sensitive parametric amplifier) and sent to the
mixer where the homodyne detection is performed.

With realistic parameters for superconducting qubit tech-
nology, we numerically show that the measurement of 30–40
ns duration can be realized with an error below10−3, neglect-
ing the intrinsic qubit decoherence. The latter assumptionre-
quires the qubit coherence time to be over 40µs, which is
already possible experimentally [14]. It is interesting that be-
cause of the interaction nonlinearity [21, 22], increasingthe
microwave field beyond∼10 photons only slightly reduces the
measurement time. The nonlinearity also gives rise to about
∼50% squeezing of the microwave field, which provides an
order-of-magnitude reduction of the measurement error.

The model.–We consider a superconducting phase or trans-
mon qubit capacitively coupled to a microwave resonator [Fig.
1(a)]. For simplicity we start with considering a two-level
qubit (the third level will be included later) and describe the
system by the Jaynes-Cummings (JC) Hamiltonian [7] with a
microwave drive (we use~ = 1)

H = ωq(t)σ+σ− + ωra
†a+ g(aσ+ + σ−a

†)

+B(t)a†e−iωt +B∗(t)aeiωt, (1)

whereωq(t) andωr are, respectively, the qubit and the res-
onator frequencies,σ± are the rasing and lowering operators
for the qubit,a (a†) is the annihilation (creation) operator for
the resonator photons,g (assumed real) is the qubit-resonator
coupling,B(t) andω are the effective amplitude and the fre-
quency of the microwave drive, respectively. In this work we
assumeω = ωr.

For the microwave driveB(t) and the qubit frequencyωq(t)
[Fig. 1(b)] we use Gaussian-smoothed step-functions:B(t) =
0.5B0{Erf[(t− tB)/

√
2σB]−Erf[(t− tB − τB)/

√
2σB]} and

ωq(t) = ω0 + 0.5(∆0 − ∆){Erf[(t − tq)/
√
2σq] − Erf[(t −

tqe)/
√
2σqe]}, wheretB, tB + τB, tq, andtqe are the centers

of the front/end ramps, andσB, σq, andσqe are the corre-
sponding standard deviations. In numerical simulations we
useσB = σqe = 1 ns (typical experimental value for a short
ramp) while we use longerσq to make the qubit front ramp
more adiabatic. Other fixed parameters are:g/2π = 30 MHz,
τB = 1 ns,tB = 3 ns,ωr/2π = 7 GHz, andω0/2π = 6 GHz,
so that initial/final detuning∆0 = ωr−ω0 is 1 GHz, while the
disperse-stage detuning∆ is varied. The measurement starts
at t = 0 and ends attf = tqe + 2σqe when the field is quickly
released [23].

Simplified analysis.–Let us first consider a simple dis-
persive scenario at large qubit-resonator detuning,|∆| ≫
g
√
n+ 1, where n is the average number of photons in
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FIG. 2: (color online). (a) Evolution in time of the effective field am-
plitudeλeff on the complex phase plane for initial qubit states|0〉 and
|1〉, computed numerically. The horizontal line emphasizes slight
asymmetry. The dots indicate time momentst = 0, 5, 10, 15, 20,
25, and 30 ns. (b) Corresponding probability distributionsP0(xϕ)
andP1(xϕ) for measurement (att = tf ) of the optimum quadrature
xϕ. Side bumps ofP0 andP1 are due to non-adiabaticity. We used
g/2π = 30 MHz, ∆/2π = 50 MHz, |λin|

2 = 9 (B0/2π = 497.4
MHz, τB = 1 ns),σq = 3 ns,tq = 3.25 ns,tqe = 30 ns,tB = 3 ns,
andtf = 32 ns.

the resonator. In this case, the system is described by the
usual dispersive Hamiltonian [7]Hd = (ω0 + g2/∆)σz/2 +
(ωr + σzg2/∆)a†a, where σz is the Pauli matrix. Af-
ter the short “catch” stage the system is in a product state
(α|0〉 + β|1〉)|λin〉, whereα andβ are the initial qubit state
amplitudes andλin is the amplitude of the coherent resonator
field, λin = −i

∫

B(t) dt (son = |λin|2). Then during the
“disperse” stage the qubit-resonator state becomes entangled,
α|0〉|λ0(t)〉 + β|1〉|λ1(t)〉, with λ0 = λine

−iφ, λ1 = λine
iφ,

andφ(t) =
∫ t

0 [g
2/∆(t′)]dt′.

The distinguishablity of the two resonator states depends on
their separation|δλ| ≡ |λ1 − λ0| = 2|λin| sin |φ| (see numer-
ical results in Fig.2). The released coherent states are mea-
sured via the homodyne detection using the optimal quadra-
ture connectingλ0 and λ1, i.e. corresponding to the angle
ϕ = arg(λ1 − λ0). We rescale the measurement results to
the dimensionless field quadraturex̂ϕ = (ae−iϕ + a†eiϕ)/2,
which corresponds to theϕ-angle axis in the phase space of
Fig. 2(a). In resolving the two coherent states, we are essen-
tially distinguishing two Gaussian probability distributions,
P0(xϕ) andP1(xϕ), centered at±|δλ|σcoh with σcoh = 1/2
being the coherent-state width (standard deviation) for both
distributions. Then the measurement error has a simple form

E =
1

2

∫ ∞

−∞

min(P0, P1) dxϕ =
1− Erf(|δλ|

√

η/2)

2
, (2)

whereη = ηcolηamp is the detection efficiency [24], which
includes the collection efficiencyηcol and quantum efficiency
of the amplifierηamp. Unless mentioned otherwise, we as-
sumeη = 1, which corresponds to a quantum-limited phase-
sensitive amplifier (for a phase-preserving amplifierη ≤ 1/2).

Full analysis.–In general the JC qubit-resonator interac-
tion (1) is non-linear for|λin|2 & ∆2/4g2 [7] and the res-
onator states are not coherent. The measurement errorE is
still given by the first part of Eq. (2), while the probabil-
ity distributionsP0,1(xϕ) of the measurement result for the
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qubit starting in either state|0〉 or |1〉 can be calculated in
the following way. Assuming an instantaneous release of the
field, we are essentially measuring the operatorx̂ϕ. There-
fore the probabilityP (xϕ) for the ideal detection (η = 1)
can be calculated by converting the Fock-space density ma-
trix ρnm describing the resonator field, into thexϕ-basis, thus
obtainingP (xϕ) =

∑

nm ψn(xϕ)ρnm(t)ψ∗
m(xϕ)e

−i(n−m)ϕ,
whereψn(x) is the standardnth-level wave function of a har-
monic oscillator. For a non-instantaneous release of the mi-
crowave field the calculation ofP (xϕ) is non-trivial; how-
ever, since the qubit is already essentially decoupled from
the resonator, the above result forP (xϕ) remains the same
[25] for optimal time-weighting of the signal. In the case ofa
non-ideal detection (η < 1) we should take a convolution of
the idealP (xϕ) with the Gaussian of width

√

η−1 − 1σcoh.
Calculation of the optimum phase angleϕ minimizing the er-
ror is non-trivial in the general case. For simplicity we still
use the natural choiceϕ = arg(λeff,1 − λeff,0), where the
effective amplitude of the resonator field [26] is defined by
λeff =

∑

n

√
nρn,n−1. The field density matrixρnm is calcu-

lated numerically using the Hamiltonian (1) and then tracing
over the qubit.

Extensive numerical simulations allowed us to identify two
main contributions to the measurement errorE in our scheme.
The first contribution is due to the insufficient separation of
the final resonator states|λeff,1〉 and |λeff,0〉, as described
above. However, there are two important differences from
the simplified analysis: the JC nonlinearity may dramatically
change|δλ| and it also produces a self-developing squeez-
ing of the resonator states in the quadraturexϕ, significantly
decreasing the error compared with Eq. (2) (both effects are
discussed in more detail later). The second contribution to
the measurement error is due to the nonadiabaticity of the
front ramp of the qubit pulseωq(t), which leads to the pop-
ulation of “wrong” levels in the eigenbasis. This gives rise
to the side peaks (“bumps”) in the probability distributions
P0,1(xϕ), as can be seen in Fig.2(b) (notice their similarity to
the experimental results [9, 10], though the mechanism is dif-
ferent). During the dispersion stage these bumps move in the
“wrong” direction, halting the exponential decrease in theer-
ror, and thus causing the error to saturate. The nonadiabaticity
at the rear ramp ofωq(t) is not important because the moving
bumps do not have enough time to develop. Therefore the rear
ramp can be steep, while the front ramp should be sufficiently
smooth [Fig. 1(a)] to minimize the error.

Now let us discuss the effect of nonlinearity (when|λin|2 >
∆2/4g2) on the evolution ofλeff,0 and λeff,1 during the
disperse stage. Since the RF drive is turned off, the in-
teraction described by the Hamiltonian (1) occurs only be-
tween the pairs of states|0, n〉 and |1, n − 1〉 of the JC
ladder. Therefore, if the front ramp of the qubit pulse
is adiabatic, the pairs of the JCeigenstatesevolve only
by accumulating their respective phases while maintain-
ing their populations. Then for the qubit initial state|0〉,
the qubit-resonator wavefunction evolves approximately as
|ψ0(t)〉 ≃ e−|λin|

2/2
∑

n(λ
n
in/

√
n!)e−iφ0,n(t)|0, n〉, where
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FIG. 3: (color online). Optimized measurement errorE vs measure-
ment timetf (optimization is performed over∆, σq, andtq). The mi-
crowave pulses correspond to mean photon number|λin|

2 = 6, 9, 12,
and15. The lines are guides for the eye.

the overbar denotes the (dressed) eigenstate andφ0,n(t) =
∫ t

tD
dt′[

√

∆(t′)2 + 4g2n−∆(t′)]/2 is the accumulated phase,
with tD = tB + τB/2 being the center of theB(t)-pulse,
which is crudely the start of the dispersion. Similarly, if
the qubit starts in state|1〉 (following the ideology of Ref.
[27], we then use|10〉 as the initial state), the state evolves
as |ψ1(t)〉 ≃ e−|λin|

2/2
∑

n(λ
n
in/

√
n!)eiφ1,n(t)|1, n〉, where

φ1,n(t) =
∫ t

tD
dt′[

√

∆(t′)2 + 4g2(n+ 1) − ∆(t′)]/2. Us-
ing the above definition ofλeff and assuming|λin|2 ≫ 1 we
derive an approximate formula

λeff,0 = λin exp

[

−i
∫ t

tD

g2
√

∆(t′)2 + 4g2|λin|2
dt′

]

. (3)

The corresponding expression forλeff,1 can be obtained by re-
placing−i with i and|λin|2 with |λin|2 + 1. These formulas
agree well with our numerical results. In particular, they ex-
plain whyλeff,0 rotates slightly faster thanλeff,1, as seen in
Fig. 2(a).

Equation (3) shows that a decrease in detuning leads to an
increase in the rotation speed ofλeff. However, in the strongly
nonlinear regime|λin|2 ≫ ∆2/4g2, the angular speed sat-
urates atd(arg(λeff,0/1))/dt = ∓g/2|λin|. Thus, the rate at
which theλeff,1 andλeff,0 separate is limited by

d|δλ|/dt ≤ |g|, (4)

which does not depend on|λin|. This means that the mea-
surement time should not improve much with increasing the
mean number of photons|λin|2 in the resonator, as long as it
is sufficient for distinguishing the states with a desired fidelity
(crudely,|λin|2 & 7/η for E . 10−4).

Results of numerical optimization.–Figure3 shows the re-
sults of a three-parameter optimization of the measurement
errorE for several values of the average number of photons
in the resonator,|λin|2 (assumingη = 1). The optimization
parameters are the qubit-resonator detuning∆, the widthσq,
and the centertq of the qubit front ramp. We see that for 9
photons in the resonator the error of10−4 can be achieved
with 30 ns measurement duration, excluding time to release
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FIG. 4: (color online). Optimized error vs measurement timetf for
|λin|

2 = 9 and quantum efficienciesη = 1 or η = 1/2 (e.g. for a
phase-preserving amplifier), taking into account the qubitlevel |2〉
(with anharmonicityA/2π = 200 MHz) or assuming a two-level
qubit.

and measure the field. The optimum parameters in this case
are:∆/2π = 60 MHz, σq = 4.20 ns, andtq = 3.25 ns [this
is a strongly nonlinear regime:|λin|2/(∆2/4g2) = 9]. As
expected from the above discussion, increasing the mean pho-
ton number to 12 and 15 shortens the measurement time only
slightly (by 1 ns and 2 ns, keeping the same error). The dotted
blue curve in Fig.4 shows the optimized error for|λin|2 = 9
and imperfect quantum efficiencyη = 1/2. As we see, the
measurement time for the error level of10−4 increases to 40
ns, while the error of10−3 is achieved attf = 32 ns.

So far, we considered the two-level model for the qubit.
However, real superconducting qubits are only slightly anhar-
monic oscillators, so the effect of the next excited level|2〉
is often important. It is straightforward to include the level
|2〉 into the Hamiltonian (1) by replacing its first term with
ωq|1〉〈1| + (2ωq − A)|2〉〈2|, whereA is the anharmonicity.
The dispersion can then be understood as due to repulsion
of three eigenstates:|0, n〉, |1, n− 1〉, and |2, n− 2〉. As
the result,λeff,0 rotates on the phase plane faster than in the
two-level approximation, whileλeff,1 rotates slower (some-
times even in the opposite direction). The Supplemental Ma-
terial [28] illustrates evolution of the resonator Wigner func-
tion corresponding to initial qubit states|0〉 and|1〉. The de-
tailed description of the effect of level|2〉 is beyond the scope
of this paper. Here we only show the optimized error for
A/2π = 200 MHz (a typical value for transmon and phase
qubits),|λin|2 = 9 andη = 1 or η = 1/2 as the red lines in
Fig. 4. For the error of10−3 the measurement timetf is 31 ns
and 39 ns, respectively.

The presented results are for the couplingg/2π = 30 MHz.
While the dispersion rate scales asg in the strongly nonlinear
regime [see Eq. (4)], the scaling of the overall duration of the
measurement process is slower thang−1 because of signifi-
cant time needed at the initial and final stages [see Fig. 1(b)].

In this work we are not interested in how close our read-
out is to the quantum non-demolition (QND) measurement
[29]. Notice that in the proposed implementation of the sur-
face code [15] the measured qubits are reset, so the QND-
ness is not expected to be important. For the results presented
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FIG. 5: (color online). (a) Time-evolution of the quadrature squeez-
ing (the qubit is initially in state|0〉). (b) Measurement error vs|δλ|
obtained numerically (solid lines) and using Eq. (2) (dashed line);
the evolution stops at 98 ns. Hereg/2π = 30 MHz, |λin|

2 = 9,
σq = 4ns, andtq = 3.25 ns.

in Fig. 3 the non-QNDness (probability that the initial states
|00〉 and |10〉 are changed after the procedure, including the
release stage) is crudely about 5%, which is mainly due to
non-adiabaticity of the rear ramp of the qubit pulse. It is pos-
sible to decrease the non-QNDness significantly by using a
larger rear ramp widthσqe and correspondingly increasing
the overall duration by several nanoseconds. However, the
non-QNDness cannot be reduced below the level of few times
(g/∆0)

2, essentially because of the Purcell effect during the
release stage.

Squeezing.–The JC nonlinearity causes the quadrature
squeezing of the microwave field. To quantify the squeez-
ing, we calculate the variance∆x2ϕ = 〈x2ϕ〉 − 〈xϕ〉2, which
can be put in the form∆x2ϕ = 1/4 + 〈a†a〉/2 − |〈a〉|2/2 +

Re[(〈a2〉 − 〈a〉2)e−2iϕ]/2. For a coherent field∆x2ϕ = 1/4,
thus the state is squeezed [26] when4∆x2ϕ < 1. Notice that
the degree of squeezing depends on the choice ofϕ. However,
in order to see the effect of squeezing on measurement error,
we compute the squeezing along the measurement direction,
ϕ = arg(λeff,1 − λeff,0).

Figure 5(a) shows evolution of the squeezing parameter
4∆x2ϕ when the initial qubit state is|0〉 (a similar result is
obtained for the initial state|1〉; we again use the two-level
approximation andη = 1). Notice that at first the field
stays coherent, which is due to the linearity of the qubit-
resonator interaction at large detuning. Later on, however, the
interaction becomes nonlinear due to decreased detuning and
leads to quadrature squeezing reaching the level of∼50% for
∆/2π . 100 MHz (see [28] for the Wigner function evo-
lution). Figure5(b) shows the measurement error as a func-
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tion of |δλ| calculated numerically (solid curves) and analyti-
cally, based on Eq. (2) (dashed curve). As expected, with the
squeezing developing, the error becomes significantly smaller
than the analytical prediction, for instance, up to a factorof
30 for∆/2π = 250 MHz. Notice also that the error shown in
Fig. 5(b) saturates in spite of increasing separation|δλ|. This
is because of the non-adiabatic error discussed above.

Conclusion.–We analyzed a fast high-fidelity readout for
superconducting qubits in a cQED architecture using the con-
trolled catch, dispersion, and release of the microwave pho-
tons. This readout uses a tunable coupler to decouple the res-
onator from the transmission line during the dispersion stage
of the measurement, thus avoiding the Purcell effect. Our ap-
proach may also be used as a new tool to beat the standard
quantum limit via self-developing field squeezing, directly
measurable using the state-of-the-art parametric amplifiers.
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